Cực trị của hàm số

 - Người đăng bài viết: Nguyễn Thu Hoài  - Chuyên mục :  Đã xem: 38 

Trung tâm văn hóa Dạy Tốt giới thiệu bạn đọc Lý thuyết Cực trị của hàm số của hàm số thuộc chương trình Toán đại số lớp 12.

 

Cực trị của hàm số 

 

Tóm tắt kiến thức.

1. Định nghĩa 

Cho hàm số y = f(x) liên tục trên khoảng (a ; b) và điểm x∈ (a ; b).

- Nếu tồn tại số h > 0 sao cho f(x) < f(x0), ∀x ∈ (x- h ; x+ h), x  xthì ta nói hàm số f đạt cực đại tại x.

- Nếu tồn tại số h > 0 sao cho f(x) > f(x0), ∀x ∈ (x- h ; x+ h), x  xthì ta nói hàm số f đạt cực tiểu tại x.

2. Định lí 1. Cho hàm số y = f(x) liên tục trên khoảng K = (x- h ; x+ h) (h > 0) và có đạo hàm trên K hoặc trên K { x}.

Nếu {f′(x)>0|∀(x0−h;x0)f′(x)<0|∀(x0;x0+h) thì x0 là điểm cực đại của hàm số

Nếu {f′(x)<0|∀(x0−h;x0)f′(x)>0|∀(x0;x0+h) thì x0 là điểm cực tiểu của hàm số 

3. Định lí 2. Cho hàm số y = f(x) có đạo hàm cấp hai trên khoảng K = (x- h ; x+ h) (h > 0).

- Nếu f'(x0) = 0, f''(x0) > 0  thì xlà điểm cực tiểu của hàm số f.

- Nếu f'(x0) = 0, f''(x0) < 0 thì xlà điểm cực đại của hàm số f.

4. Quy tắc tìm cực trị

Quy tắc 1

- Tìm tập xác định.

- Tính f'(x). Tìm các điểm tại đó f'(x) bằng f'(x) không xác định.

- Lập bảng biến thiên.

- Từ bảng biến thiên suy ra các điểm cực trị.

Quy tắc 2

- Tìm tập xác định.

- Tính f'(x). Tìm các nghiệm xi của phương trình f'(x)=0.

- Tính f''(x) và f''(xi) suy ra tính chất cực trị của các điểm xi.

(Chú ý: nếu f''(xi)=0 thì ta phải dùng quy tắc 1 để xét cực trị tại xi)

 


 
Tổng số điểm của bài viết là: 0 trong 0 đánh giá
Click để đánh giá bài viết

  Ý kiến bạn đọc

  Ẩn/Hiện ý kiến

Mã chống spam   

Những tin mới hơn

 

Những tin cũ hơn

Thời điểm thi THPT QG

Bạn muốn tổ chức thi thử vào THPT QG khi nào?

Top